Disease-mediated bottom-up regulation: An emergent virus affects a keystone prey, and alters the dynamics of trophic webs
نویسندگان
چکیده
Emergent diseases may alter the structure and functioning of ecosystems by creating new biotic interactions and modifying existing ones, producing cascading processes along trophic webs. Recently, a new variant of the rabbit haemorrhagic disease virus (RHDV2 or RHDVb) arguably caused widespread declines in a keystone prey in Mediterranean ecosystems - the European rabbit (Oryctolagus cuniculus). We quantitatively assess the impact of RHDV2 on natural rabbit populations and in two endangered apex predator populations: the Iberian lynx (Lynx pardinus) and the Spanish Imperial eagle (Aquila adalberti). We found 60-70% declines in rabbit populations, followed by decreases of 65.7% in Iberian lynx and 45.5% in Spanish Imperial eagle fecundities. A revision of the web of trophic interactions among rabbits and their dependent predators suggests that RHDV2 acts as a keystone species, and may steer Mediterranean ecosystems to management-dependent alternative states, dominated by simplified mesopredator communities. This model system stresses the importance of diseases as functional players in the dynamics of trophic webs.
منابع مشابه
A Brief Look at Human Impacts on Sharks
This brief review examines the many human activities that threaten sharks, their impacts, and the implications for the ecosystems that rely upon these apex predators. As keystone species, sharks play a crucial role in maintaining healthy ecosystems by asserting top-down forces on trophic webs and keeping prey populations healthy and in balance. However, sharks’ slow growth rates, low fecundity ...
متن کاملEvaluating the effects of trophic complexity on a keystone predator by disassembling a partial intraguild predation food web.
1. Many taxa can be found in food webs that differ in trophic complexity, but it is unclear how trophic complexity affects the performance of particular taxa. In pond food webs, larvae of the salamander Ambystoma opacum occupy the intermediate predator trophic position in a partial intraguild predation (IGP) food web and can function as keystone predators. Larval A. opacum are also found in sim...
متن کاملAssessing the trophic position and ecological role of squids in marine ecosystems by means of food-web models
We synthesized available information from ecological models at local and regional scales to obtain a global picture of the trophic position and ecological role of squids in marine ecosystems. First, static food-web models were used to analyze basic ecological parameters and indicators of squids: biomass, production, consumption, trophic level, omnivory index, predation mortality diet, and the e...
متن کاملMismatch in microbial food webs: predators but not prey perform better in their local biotic and abiotic conditions
Understanding how trophic levels respond to changes in abiotic and biotic conditions is key for predicting how food webs will react to environmental perturbations. Different trophic levels may respond disproportionately to change, with lower levels more likely to react faster, as they typically consist of smaller-bodied species with higher reproductive rates. This response could cause a mismatc...
متن کاملAquatic predation alters a terrestrial prey subsidy.
Organisms with complex life histories (CLH) often cross habitat or ecosystem boundaries as they develop from larvae to adults, coupling energy flow between ecosystems as both prey (bottom-up) and consumers (top-down). Predation effects on one stage of this life cycle can therefore cascade across ecosystems, magnifying the impact of local predation. The majority of predation studies have assesse...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016